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We present results of direct computer simulations and of Monte Carlo renor- 
realization group (MCRG) studies of the nonequilibrium steady states of a spin 
system with competing dynamics and of the voter model. The MCRG method, 
previously used only for equilibrium systems, appears to give useful information 
also for these nonequilibrium systems. The critical exponents are found to be of 
Ising type for the competing dynamics model at its second-order phase trans- 
itions, and of mean-field type for the voter model (consistent with known results 
for the latter). 
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1. I N T R O D U C T I O N  

Equi l ib r ium stat is t ical  mechanics  has deve loped  m a n y  powerful  tools  for 
the s tudy of  phase  t rans i t ions  and  cri t ical  phenomena .  There  is no com-  
pa rab le  theory  for nonequ i l ib r ium phenomena .  I t  is therefore necessary and 
useful to s tudy simple nonequ i l ib r ium systems. This pape r  concerns  phase  
t rans i t ions  in nonequ i l ib r ium s teady states of  Ising, equivalent ly  la t t ice gas, 
models.  The systems evolve accord ing  to local  s tochast ic  rules. Such 
systems are often referred to as r a n d o m  or  p robab i l i s t i c  cel lular  a u t o m a t a  
in the physics l i te ra ture  (~) and  as in terac t ing  par t ic le  systems in the 
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mathematical literature) 2~ The important point for us is that the steady 
states of these systems are in general not described by a Gibbs measure 
with any reasonable Hamiltonian./3) 

Various models of this type have been studied, (4 8) and exact results 
are known for some of them in certain limits. (9 11) Here we consider a 
model with competing dynamics of single-spin flips at finite temperature 
and spin exchanges at infinite temperature. This model was studied recently 
on the square lattice via computer simulation (8) and we report results of 
new simulations that bear out the predictions made in that work. In 
addition we carried out, for the first time, we believe, a Monte Carlo renor- 
malization group (MCRG) analysis of this model as well as of the "voter 
model" in three dimensions. 12) The voter model is a very popular model in 
the mathematics literature. 

We obtain critical exponents from direct simulations and MCRG 
approaches consistent with the competing dynamics model being in the 
same universality class as the Ising model, as predicted in ref. 12. The  voter 
model is exactly soluble and thus provides a check on the MCRG method. 
The method appears to give correct results, corresponding to classical 
exponents, despite the pathology of the model. 

In the following section, we introduce the competing dynamics model. 
In Section 3 we present computer simulation results. The MCRG analysis 
is given in Section 4. The result of MCRG for the voter model is presented 
in Section 5. The last section contains a discussion of the applicability of 
the standard MCRG method in nonequilibrium steady-state problems. 

2. N O N E Q U I L I B R I U M  ISING M O D E L  WITH 
C O M P E T I N G  D Y N A M I C S  

Consider a two-dimensional square lattice of Ising spins ~ = {~r(x)k 
x ~ Z  2, a ( x ) =  _+1}. The system evolves according to the following 
dynamics in a computer simulation(8): pick a site x at random, perform a 
Kawasaki spin exchange (13) with probability p, and attempt a spin flip (14) 
with probability 1 - p. The choice is decided by comparing a random num- 
ber uniformly distributed in (0, 1) with p. If the number is less than p, the 
Kawasaki spin exchange is performed as if the system is at infinite tem- 
perature, i.e., a neighboring site y is chosen at random, and the values of 
the spins are exchanged without paying attention to their environment. The 
new configuration gxy is ffXY(x)=ff(y), aXY(y)=a(x), and ax-~'(x')=cr(x ') 
for x' r x, y. If the number is larger than p, a spin flip is considered. The 
single-spin-flip process is specified by w(x, ~), the probability that the spin 
at site x is flipped when the spin configuration is ~. The choice of w(x, ~) is 
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such that detailed balance is satisfied with respect to a nearest neighbor 
ferromagnetic Ising model. That is, 

w(x, g) _- exp{ - f l[H(q x) - H(g)]  } (1) 
w(x, ~x) 

with H ( g ) = - J Y ~ l x - y l = l  a(x)~(y) and /~= 1/kBT. Here ex denotes a 
configuration of spins that is the same as g, except that the spin at site x is 
flipped, crX(x)= -cr(x). 

There is a lot of freedom in the choice of w(x, ~). We will consider the 
original Glauber rate, (14~ 

2 

w(x, 6 ) = ~  ~ [1-- s~r(x)] I-[ {l+�89 (2) 
s =  t - I  i =  I 

and the Metropolis rate, ~15) 

w(x, ~r) = min{ 1, exp[ - f l  dH(~)]  } (3) 

2 

AH(cr) = H(~ ~) - H(cr) = 2Jo-(x) ~ [o(x + el) + a(x - e,)] (4) 
i = l  

where 7 = tanh 2/~J, and ei is unit lattice vector in i direction. 
In the absence of spin exchanges (p = 0), the steady state is just the 

Gibbs state of the nearest neighbor Ising model at temperature /~-i 
independent of the choice of flip rates. However, for p r 0 we have a non- 
equilibrium situation. The steady state is not described by a Gibbs measure 
and depends on the form of w(x, ~).18) 

Exact results of the competing dynamics model are known (8) in the 
"scaling limit" p ~  1 when time and space are scaled by ( l - p )  -~ and 
(1 _p)-~/2, respectively. In that limit, the system is described by a 
continuous magnetization density m(r, t), which evolves according to a 
nonlinear partial differential equation of the diffusion-reaction type/9) 

~?m(r, t) 1 V2m(r, t) OV(m) 
c~t = 2  ~3m (5) 

where V(m) is a polynomial in m which depends on the choice of w(x, ~). 
In the previous computer simulation (s~ with the Metropolis rate, it was 

found that the stationary state of this system undergoes a second-order 
transition as a function of flJ for small p and a first-order one for large p. 
This is interpreted in ref. 8 as a change from the standard second-order 
equilibrium phase transition at p = 0  to a first-order, mean-field-type 
transition found in the bifurcations of (5) about the m = 0 solution. It is 



896 Wang and kebowitz 

found that for the Glauber w(x, ~) the bifurcations in (5) give a second- 
order transition. Therefore, if the analysis in ref. 8 is right, there should be 
no change from a second-order transition in the Glauber case. 

Dickman (16) studied the same model using a mean-field-type 
approximation with the Metropolis rate. The equations he obtains agree, 
when p --+ 1, with the scaling limit results. We give here the results of this 
approximation for the Glauber rate. 

3. C O M P U T E R  S I M U L A T I O N  OF THE 
C O M P E T I N G  D Y N A M I C S  

We carried out more detailed simulations of the competing dynamics 
using both the Glauber rate (2) and the Metropolis rate (3). Systems of 
sizes L x L ( L =  8, 16, 32, 64, 128) and runs up to 105 Monte Carlo steps 
per spin were investigated. The transition temperatures are estimated in 
several ways: (1) From peaks of the "susceptibility" defined by 
magnetization fluctuations in the usual way, 

z = ~  ~(x - ~(x (6) 
X 

(2) By looking directly at the distribution of the magnetization 

The function P(m) has a single peak above the transition temperature at 
m = 0, and develops double peaks at + m* # 0 for ordered phases. (3) By a 
Monte Carlo renormalization group (MCRG) method, looking at the flow 
of correlation functions under renormalization group transformations. The 
transition temperatures estimated by different methods agree with each 
other within a few percent. 

Our Metropolis-rate transition temperatures agree with those of ref. 8. 
For the Glauber rate the results are new. We find first that, unlike the 
Metropolis case, here the transition temperature increases as p increases. 
We plot the inverse transition temperatures as a function of p for the two 
rates in Fig. 1. The solid line is a mean-field result using Dickman's 
method. ~ The mean-field and simulation results approach each other for 
large p. The values flcJ = 0.282 _+ 0.002 at p = 0.95 and ficJ = 0.275 _+ 0.004 
at p=0.975 for size L =  128 are in good agreement with the value 
Be J= 0.2747 (tanh 2fl,.J= 1/2) (8) in the scaling limit. 

Figure 2 is a plot of the second moment of magnetization distribution 
<m2> versus inverse temperature /? at p=0 .95  for the Glauber rate. The 
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Fig. 1. Inverse transition temperature ,8 c of the competing dynamics model in two dimen- 
sions as a function of spin-exchange rate p for the Glauber  rate (circles) and the Metropolis 
rate (squares). The solid line is a mean-field result. 
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Fig. 2. Second moment  (m z> versus inverse temperature fl at spin-exchange rate p = 0.95 for 
the Glauber  rate with size L = 64. 
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finite-size effect is rather weak in the Glauber case. The data indicate that 
the phase transition for the Glauber rate is "second order" with no 
noticeable discontinuity in the magnetization (and energy) as a function of 
ft. There is a range of temperatures where (rn 2) behaves linearly in /3, 
which is an indication of a crossover to the mean-field behavior expected in 
the limit p ~ 1. (8). On the other hand, finite-size effects are very pronounced 
for the Metropolis rate, and magnetization as a function of fl appears to 
develop a discontinuity in the infinite-size limit at large p. Figure 3 is a plot 
of ( m 2 )  1/2 as a function of /3 for L =  128, p=0.95.  The transition tem- 
perature and jump in magnetization are in agreement with the p ~ 1 limit 
values, fl, J =  0.515, Am =0.925. (8) The "specific heat," calculated from the 
fluctuation of energy, seems not to diverge at the transition for the Glauber 
rate. This is in contrast to the Metropolis case, where the "specific heat" 
has a very sharp, &function-like divergence, reflecting a discontinuity of 
nearest neighbor correlation. 

The susceptibility defined by Eq. (6) diverges at the transition,,tem- 
peratures. Assuming a form of power-law divergence X ~ [/3-/3c(p)[ -~, we 
found 7=  1.76+_0.10 at p=0 .25  for the Glauber rate, which is consistent 
with the Ising exponent ~ = 7/4. 

o.4o o145 also 
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Fig. 3. Magnetizat ion ( m  2)1/2 as a function of fl at p = 0.95 for the Metropol is  rate with a 
linear size L = 128. 
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4. MONTE CARLO RENORMALIZATION GROUP ANALYSIS 

The Monte Carlo renormalization group (MCRG) method (17q9~ has 
been used successfully for equilibrium systems to determine critical tem- 
peratures and critical exponents accurately. We apply the same procedure 
to nonequilibrium steady states. For each "typical configuration" ~(o) 
generated by computer simulation, successive renormalization transfor- 
mations a(")--+~("+~) are carried out as follows. ~ The lattice sites are 
divided into 2 • 2 blocks of four spins and the transformed configuration is 
obtained by representing a group of four spins in a block by a single block 
(Ising) spin. The new block spin is determined by a majority rule, that is, 
the block spin will take the value +1 ( - 1 )  if the majority of the spins in 
the block are + 1 ( - 1 ). If there is no majority, it is chosen + 1 or - 1 with 
equal probability. Each time a transformation is carried out, the (linear) 
lattice size L shrinks by a factor 2. This transformation procedure is carried 
out several times, until the lattice size becomes very small and finite-size 
effects become severe. The central idea of the renormalization group is that 
the transformation will bring the system to a fixed point if the system is at 
criticality (infinite correlation length). We assume that such a fixed point 
exists for nonequilibrium steady states. 

Let us define 

(8) 

where S~ '') is an a-type operator on a ('). For example, S~ ") = 5Z~ a~")(x) is 
the total magnetization, and S~en)=Zlx_~.l=l~")(x)~(")(y) is nearest 
neighbor coupling. Table I is a list of operators considered in this work. As 
in equilibrium MCRG, the linearized renormalization group transfor- 
mation matrix T ~  ) is given by 

T(,,)= [C(,,.,,)] ~ C ( .... 5) (9) 

The matrix T ~  ) is block diagonal among odd and even operators with 
respect to inversion [G'(x)= - ~ ( x ) ]  in S~ n). The largest odd eigenvalue is 
an estimate of b -v" and the largest even eigenvalue is for b y~. If the system is 
at criticality, these eigenvalues should be stationary with respect to n. This 
gives a good method of locating the transition temperature. 

We calculated T~ ) for lattice sizes up to L = 128 at p = 0.25, 0.50 for 
the Metropolis rate. The estimates of exponents from eigenvalues of T~ ) 
are listed in Table II. The dependence of the estimated exponents on the 
number of operators included is weak. This means that only the first few 
short-distance interactions are important. There is a finite-size effect on the 
apparent transition temperatures. The exponent Yn is estimated to be 

822/5l/5-6-I  1 
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Table I. 
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Types of Operators Used in Monte Carlo Renormalization Group 
Analysis 

c~ S~ Description 

1 S Magnetization 

Triplet spins, right angle 2 

3 0--------0-------0 Triplet spins, straight line 

4 H Nearest neighbor 

J Next nearest neighbor 5 

121 6 Four spins on a plaquette 

7 ~ Two spins distance 2 apart 

Two spins, (1, 2) position 8 

Four pins on a rectangle 9 

1.82___0.03 at p=0 .50 .  The exponent y r =  1/v converges slowly to  
1.00 ___ 0.05 after two or three renormalization transformations. We inter- 
pret our results as consistent with the equilibrium Ising model exponents 
y/~ = 1.875 and y T =  1. (20) 

In the case of the Glauber rate we considered p = 0.25, 0.50, and 0.95. 
The exponent Yr is 1.0+0.1, consistent with the equilibrium Ising model 
exponent y r =  1. However, the value YH at p = 0 . 9 5  is lower than the 
equilibrium Ising value, but increases slowly with renormalization group 
transformation. We expect that it finally flows to the Ising value. The dif- 
ficulty with large p, we think, is due to a crossover to a mean-field behavior 
a t p - .  1. 

These calculations indicate that the critical exponents for the non- 
equilibrium second-order phase transition of the competing dynamics are 
consistent with the equilibrium Ising exponents, which suggest universality 
for the dynamics, in agreement with ref. 12. 



Table il. Estimated Critical Exponents by M C R G  for the Compet ing Dynamics 
Model  at p = 0 . 5  wi th  Metropol is  Flip Rate a 

Number  of 1/T, = 0.453, I / T  c = 0.450, 1/Tc = 0,448, 
RG step interactions L = 128 L = 64 L = 32 

Exponent Yn 

1 

Exponent Yr 

1 

1 1.822 1.815 
2 1.814 1.810 
3 1.814 1.810 
1 1.840 1.829 
2 1.840 1.829 
3 1.840 1.829 
1 1.840 1.820 
2 1.840 1.821 
3 1.839 1.821 
1 1.839 1.811 
2 1.839 1.815 
3 1.839 1.815 
1 1.844 
2 1.847 
3 1.847 

1 1.492 1.434 
2 1.488 1.437 
3 1.485 1.438 
4 1.465 1.430 
5 1.460 1.427 
6 1.459 1.424 
1 1.321 1.244 
2 !.325 1.265 
3 1.326 !.266 
4 1.324 1.270 
5 1.324 1.273 
6 1.324 1.272 
1 1.122 1.020 
2 1.148 1.068 
3 1.152 !.069 
4 1.151 1.081 
5 1.154 1.094 
6 1.152 1.101 
1 1.043 0.920 
2 1.084 0.984 
3 1.078 0.985 
4 1.088 0.985 
5 1.084 1.015 
6 1.078 1.020 
1 0.972 
2 1.003 
3 0.990 
4 1.012 
5 0.939 
6 0.955 

The data are from runs with 104 Monte  Carlo steps. 

1.812 
1.806 
1.806 
1.819 
1.818 
1.818 
1.800 
1.800 
1.800 

1.422 
1.435 
1.432 
1.425 
1.423 
1.420 
1.234 
1.258 
1.258 
1.261 
1.264 
1.262 
0.975 
1.030 
1.030 
1.038 
1.055 
1.059 
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5. MCRG ON THE VOTER MODEL 

The voter model (2) is a single-spin-flip dynamical model given by the 
flip rate 

1L ] wv(x,,)---~ 1 -  a(x) ~ a(y)  (10) 
I x - Y l  = 1 

This dynamics models the situation in which each lattice site is occupied by 
a voter who has to decide between voting yes or no [o-(x) = 1 or - 1] on a 
certain issue. The voter does this by looking at one of his or her 2d 
neighbors (chosen at random) and adopting its position on the issue. 

For  a system of finite size with periodic boundary conditions, it is 
clear that the only stationary states are that of a consensus a(x)= +1 or 
a ( x ) =  - 1  for all x, everybody up or everybody down. What about the 
infinite system? For  d =  1, 2 there are only consensus states. For  d>~ 3, on 
the other hand, there are unique steady states for every value of 
m = ( a ( x ) ) .  The pair correlation function in these states behaves like r 2 d 
(d>~ 3). (2) 

For  the sake of convenience of computer simulations, which are 
always done on a finite lattice, a random spin-flip process is added to 
(10)3 21) In terms of flip rate we let 

w(x,,)=(1-)v)wv(x,a)+�89 (11) 

where 0~<p, 2~< 1 and wv is given in (10). 
The time evolution of the correlation functions can be obtained with 

the help of the master equation 

aP(., 0 O ~  - ~ w(x, ~x) p(ax, t) - ~ w(x, . )  P(,~, t) 
x x 

(12) 

One can easily see that in the steady state the correlation functions satisfy 
simple linear equations, 

1 - 2  
(a(x) ) -  2----d- ~" (a(y))+X(1-2p)=O 

I x  - -  y [  = 1 

1 - 2  
G(x)- 2---~ ~ G(yl+2(1-2p)(a(O))=O 

I x ) 'I  = 1 

(13) 

(14) 

where G ( x ) =  (a(O) a(x)). We consider solutions for p =  1/2 in three 
dimensions. From Eq. (13) we have ( a ( x ) ) = 0 .  Using Fourier transfor- 
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mation, Eq. (14) is solved on an L x L x L lattice with periodic boundary 
conditions, 

6L,~(x,, x2, x3) 
cos(2~r/L)(Xl l, + xfl2 + x313) 

= c ~ 1/(1 - 2) - l[cos(21rl,/L) + cos(2~zlffL) + cos(2zrl3/L)] 
1 <~11,12,13 <~ L 

(15) 

where c is a normalization constant determined by Gc,~.(0, 0, 0 ) =  1, and 
ll, 12, 13 and xl ,  x2, x3 take integer values. The pair correlation funct ion 
has the property 

Gc,~.(Xl, x2, x3) --* 1 as ,i. ---, 0, for fixed L (16) 

and 

Gc,;~(Xl,X2, X3)--.e r /~ /r  asL- -*oo ,  f o r f i x e d 2  (17) 

where r = (x 2 + x2~ + x2) I/2 and ~ = [(1 - 2)/2] 1/2. The order of the limits 
2 --* 0 and L ~ oo cannot be interchanged. For  an infinite system, as 2 ~ 0, 
the correlations become long-ranged and the system becomes critical. 
Comparing (17) with the standard Ising form r 2 -a  ", we have t /=0 .  If 
we identify 2 with T - T , . ,  the correlation length diverges as ~ ,-~ 2 v with 
v = 1/2. These exponents clearly have mean-field values. It is also known (22) 
that for 2 = 0 the magnetization in a volume of side D divided by D 5/2, 
Z if(X)~ D5/2, goes to a Gaussian random variable as D --* oo. 

We applied the Monte Carlo renormalization group method to the 
voter model and observed the following features (Fig. 4). For fixed 2 > 0, 
where the system is not at criticality, the renormalization group transfor- 
mation brings the system to a more disordered state. As 2 approaches zero, 
but keeping ~ < L, the system behaves essentially as an infinite system. The 
exponents estimated from the first-step renormalization group transfor- 
mation are consistent with the mean-field values, y /~=5 /2  and y r = 2 .  
Convergence of the exponents with iterations of renormalization group 
transformation is poor  because of finite-size effects, which become severe as 

--* L. The consensus state with all spins up (or all spins down) gives 
y H =  3. Even though the voter model has this pathological behavior, our 
results are consistent with mean-field values for the exponents in the 
infinite-size, small-2 limit. 
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Fig. 4. The exponents y .  and Yr of the voter model in three dimensions, calculated from 
first-step renormalization group transformation, as a function of parameter 2 for various sizes: 
squares, L = 16; circles, L = 32. 

6. D ISCUSSIONS 

The relations between eigenvalues of the renormalization group trans- 
formation matrix and critical exponents are v = 1/yr and rl = d +  2 - 2 y H ,  
where v and r/ are defined through the correlation length ~ ~ I T - T c [ - v  
and correlation function G(r)~ r 2 d - n .  Derivations of those relations are 
in refs. 18, 19, and 23. They are based on the existence of a flow on a space 
of Hamiltonians that specify the measures under successive tenor- 
realizations. Values of Yr and YH for Ising and mean-field models are found 
from these relations. 

As already mentioned, the models studied in this paper have 
stationary measures that are not Gibbsian with any Hamiltonian. (This can 
be proven rigorously for the voter model ~24) and is almost certainly the case 
for the competing dynamics.) Yet, as we saw, a blind application of the 
renormalization group gave values of Yr and YH consistent with expec- 
tations and with direct measurement of critical exponents. Why this should 
be so is not entirely clear. Most likely the success of M C R G  in these 
systems is due to the fact that the successive distributions under RG trans- 
formations are described, at least approximately, by Gibbs measures with 
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short-range interactions which flow, at criticality, toward the same fixed 
point in the space of measures as do the corresponding Ising and mean- 
field models. This is in fact what is argued by Grinstein eta/. O2) should 
happen for general kinetic Ising models and our results on the competing 
dynamics model appears to confirm their analysis. The voter model, on the 
other hand, is clearly in a different universality class. The results of Presutti 
and Spohn ~22) in fact show rigorously that under the proper block renor- 
realization the measure flows to the Gaussian fixed point and our results 
are consistent with this. 

We conclude with the hope that there will be further applications of 
the MCRG method to nonequilibrium problems. A study near the 
'~ point is also of considerable interest. 
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